
 Poetry in programs: A brief
examination of software aesthetics,

including observations on the history
of programming styles and
speculations on post-object

programming

Robert Filman
RIACS

NASA Ames
Moffett Field, CA

Lisp Poems
One of the first projects Dan told me he

planned was to create a book of Lisp
Poems

((lambda (x)
 (list x (list 'quote x)))
 '(lambda (x)
 (list x (list 'quote x))))

Second Poem
((lambda (y)

 (letrec
 ((rev
 (lambda (x)
 (cond ((null? x) ())
 (#t (append (rev (cdr x))
 (list (if (pair? (car x))
 (rev (car x))
 (car x)))))))))
 (list (list (rev y) 'quote) (rev y))))
 '(lambda (y)
 (letrec
 ((rev
 (lambda (x)
 (cond ((null? x) ())
 (#t (append (rev (cdr x))
 (list (if (pair? (car x))
 (rev (car x))
 (car x)))))))))
 (list (list (rev y) 'quote) (rev y)))))

Second Poem Eval
((((((y rev)

 ('quote (y rev) list)
 list)
 (((((((((x car)
 ((x car) rev)
 ((x car) pair?)
 if)
 list)
 ((x cdr) rev) append) #t)
 (() (x null?)) cond)
 (x) lambda) rev))
 letrec) (y) lambda) quote)
 ((((y rev)
 ('quote (y rev) list) list)
 (((((((((x car)
 ((x car) rev)
 ((x car) pair?)
 if)
 list)
 ((x cdr) rev) append) #t)
 (() (x null?))
 cond)
 (x) lambda) rev))
 letrec) (y) lambda))

Third Poem (D.R.H.)
((lambda (y)
 (letrec
 ((rev
 (lambda (x)
 (cond ((null? x) ())
 (#t (append
 (rev (cdr x))
 (list (cond
 ((pair? (car x)) (rev (car x)))
 ((symbol? (car x))
 (string->symbol
 (list->string
 (rev
 (string->list
 (symbol->string (car x)))))))
 (#t (car x))))))))))
 (list (list (rev y) 'quote) (rev y))))
 '(lambda (y)
 (letrec
 ((rev
 (lambda (x)
 (cond ((null? x) ())
 (#t (append
 (rev (cdr x))
 (list (cond
 ((pair? (car x)) (rev (car x)))
 ((symbol? (car x))
 (string->symbol
 (list->string
 (rev
 (string->list
 (symbol->string (car x)))))))
 (#t (car x))))))))))
 (list (list (rev y) 'quote) (rev y)))))

Third Poem Eval
 ((((((y ver)

 ((etouq etouq)

 (y ver) tsil) tsil)

 ((((((((((x rac) #t)

 (((((((x rac) gnirts>-lobmys) tsil>-gnirts) ver)

 gnirts>-tsil) lobmys>-gnirts)

 ((x rac) ?lobmys))

 (((x rac) ver)

 ((x rac) ?riap)) dnoc) tsil)

 ((x rdc) ver) dneppa) #t)

 (() (x ?llun)) dnoc) (x) adbmal) ver))

 certel) (y) adbmal) quote)

 ((((y ver)

 ((etouq etouq)

 (y ver) tsil) tsil)

 ((((((((((x rac) #t)

 (((((((x rac) gnirts>-lobmys) tsil>-gnirts) ver)

 gnirts>-tsil) lobmys>-gnirts)

 ((x rac) ?lobmys))

 (((x rac) ver)

 ((x rac) ?riap)) dnoc) tsil)

 ((x rdc) ver) dneppa) #t)

 (() (x ?llun)) dnoc) (x) adbmal) ver))

 certel) (y) adbmal))

Fourth Poem
((lambda (x y)

 (list y

 (list 'quote x)

 (list 'quote y)))

 '(lambda (x y)

 (list y

 (list 'quote x)

 (list 'quote y)))
 '(lambda (x y)

 (list x

 (list 'quote x)

 (list 'quote y))))

The Art of Computer
Programming (D.E.K.)

• Software development is an Art
• Art:

– Skill at joining or fitting.
– A system of principles and rules for attaining a

desired end
– Use of skill to create that which is esthetically or

intellectually pleasing
– Necromancy

Intellectual activities

• Science: Distillation of
knowledge into
principles and laws

• Engineering: The
combination of art with
attention to economy

• Manufacturing:
Repeated activity
following a well-defined
and low-skill plan

• Fashion: Selecting from
equivalent alternatives

Progress
• Arts, sciences,

engineering show
an intellectual
progression,
shaped by
– New technology
– Shifting economic

forces
– New

understandings
– Evolving

responses to the
ideas of prior
generations

• Primitive
• Greek & Roman
• Byzantine
• Romanesque &

Gothic
• Renaissance
• Baroque &

Rococo
• Neoclassicism &

Romanticism
• Impressionism
• Modern
• Post-modern

Monotonicity (or lack thereof)
• Science and engineering are

unconditionally monotonic
– No going back to Newtonian

physics, Geometry = Euclid,
Linnaeus

• Fine arts revisit old themes
with new twists
– Photorealism

• Disciplines like education and
business management follow
fashions

The Ilities of Software
Development

• The joy of computer science is that it spans so much
of the human skill set, from science to engineering to
psychology

• Ilities
– Aesthetic of understandability
– Ease of

• Construction
• Maintenance
• Evolvability

– Economy of execution
– Reliability
– Security
– Interoperability
– …

Sapir-Whorf hypothesis applied
to software development

• The programming
language you use
affects the way you
think about software
development
– Half the gang-of-four

patterns are patterns
only because their
addressing C++
programmers, not
Lispers.

Programming Languages as an
Intellectual Progression

• Programming is specification (M.W.)

• Earliest programming languages were
concerned with “efficient realism”
– Difficult to render even highly structured problems

into code
– Efficient use of machine resources was a dominent

criterion
• Programming was linear

– Things said in a program had a “one-to-one”
correspondence to what happened in execution

• Programming was planar
– One could easily trace the potential execution paths

of a program and identify which conditions would
give rise to which code being executed

Programming Language Eras

• Pure functionality
• Structured

programming
• Abstract data types
• Object-oriented

programming

• Functional
programming

• Logic programming
• Rule-based systems

Limits of object-orientation

• All meaning is wrapped up in the code
• Unitary modularization

– Tyranny of the dominant decomposition
(H.O.)

• The world isn’t made up of discrete,
unconnected objects

• Inherent inability to create and
maintain correct code

• Tyranny of call-response
• Domain independence

Possible responses to the limitations
• All meaning is wrapped up in the

code
– Richer uses of annotation

• Executable annotation, not UML or
comments

• Unitary modularization
– Aspect-oriented programming

• The world isn’t made up of discrete,
unconnected objects
– Composites, collections and masses
– Maintained relationships
– Persistence
– More of a merger of the database

notions of view and search with
programming structures

Possible responses to the
limitations, cont.

• Inherent inability to create and maintain correct code
– Autonomic computing

• Describe how to recognize incorrect behavior and what to do about it
• Tyranny of call-response

– Event-based computing
– Conversations, protocols
– Context-aware systems

• Domain independence
– Domain-specific languages
– Extensible syntax

Concerns
• Programmers have many

concerns—things they care
about—when building software
systems

• Current programming technology
demands a dominant decomposition
– Programmers have to program to all

their concerns
• Even the ones that don’t exist yet

– Programmers have to know when to
invoke other behavior

• Separation of concerns in
conventional languages
– Subprograms
– Inheritance

Examples of Concerns

• Security
• Accounting
• Synchronization
• Quality of service
• Reliability
• Performance

enhancements

• Concerns exist at
both the requirements
and design levels

Aspect-Oriented Programming
• Allows the separate specification of concerns
• Describes how concerns interact with the

overall system and each other (annotation)
• Provides a tool that weaves together the

separate concerns into a complete system

Choices in Developing AOP
Languages

• What quantified statements are allowed
– Join points
– Scope of quantification
– Syntax for expressing application

• Interaction among aspects and base code
– Visibility
– Ordering
– Conflict resolution

• Implementation mechanism
– Compiler / Byte-code manipulation
– Dynamic wrapping
– Meta-programming
– Program transformation

Aspect-Oriented Programming is
Quantification and Obliviousness (R.E.F. & D.P.F.)

• The essence of the AOP
idea is to allow
– Write statements about

part of or the entire
program (quantification)

– Where individual program
elements don’t have any
notation that the alternative
concerns are going to be
invoked (obliviousness)

Research regime
Define a

language of
events and

actions on those
events.

Determine how
each event is

reflected (or can
be made visible)
in source code.

(its shadow)

Create a system
to transform

programs with
respect to these

events and
actions.

Trinity (R.E.F., K.H. & D.H.)

• Quantification over what?
– The syntactic structure of the program
– The result of static semantic (compiler)

analysis
– Events that happen dynamically in the course

of program execution
• Sometimes there is a strong

correspondence between syntactic
structures, semantic objects and dynamic
events
– Sometimes there’s not

• The shadow of a quantification is the
places in the code that might affect the
quantification

Architectural View

Source Java
code

Event-action
descriptions

Event-
Edit

compilation

Transform

AST

Target Java
code

Parse PrettyPrint

Trinity behavior

• Transform programs based on pattern-action
rules
– When the pattern of a quantification is seen,

transform the program to perform the behavior
desired in the action

– Rules like database queries
• Transformations can be either

– Structural: change the original program
– Behavioral: perform some action before, after,

around or instead of an original target
• Structural changes on events don’t make sense

Applications
• Debugging
• Profiling
• Monitoring
• Contextual evaluation

(the "jumping beans"
problem)

• Autonomic computing
• Security
• Concurrency
• Resource management

• Refactoring
• Persistence
• User interface

consistency

Discussion

